

206 Marking Scheme

Grade Mark Required Awarded (/ ₁₀₀)		% candidates achieving grade
A	78+	26.6%
В	64+	23.8%
С	50+	24.7%
D	43+	9.1%
No award	< 43	15.8%

Section:	Multiple Choice		Extended Answer		
Average Mark:	25.7	/40	37.3	/60	

	2006 Higher Chemistry Marking Scheme					
MC Qu	Answer	% Pupils Correct	Reasoning			
1	A	78	☑A fluorine atom is 2,7 ∴ negatively charged Fluoride F ⁻ ion is 2,8 ☑B sodium atoms are neutral and not negatively charged ☑C aluminium Al ³⁺ ions are positively charged ☑D neon atoms are neutral and not negatively charged			
2	С	52	 ☑A He is a noble gas ∴ monoatomic atoms ☑B CH₄ has 5 atoms per molecule ∴ penta-atomic ☑C CO has diatomic molecules with 2 atoms chemically bonded ☑D NaCl is ionic ∴ contains no molecules 			
3	D	62	■A X → X ⁺ : No change to nucleus so no change to mass number ■B X → X ⁺ : No change to nucleus so no change to the charge in the nucleus ■C X → X ⁺ : No change to nucleus so no change to the charge in the nucleus ■D X → X ⁺ : Group 1 elements have 1 outer electron which is removed e.g. 2,8,1 → 2,8			
4	В	48	0.6mol of Cl ⁻ ions \therefore 0.3 mol of MgCl ₂ f.u. \therefore 0.3 mol Mg ²⁺ ions 0.2mol of SO ₄ ²⁻ ions \therefore 0.2mol of MgSO ₄ f.u. \therefore 0.2 mol Mg ²⁺ ions \therefore 0.3mol Mg ²⁺ ions (MgCl ₂) + 0.2mol Mg ²⁺ ions (MgSO ₄) = 0.5mol Mg ²⁺			
5	A	74	 ☑A NH₃ neutralises acid as NH₃ dissolves in water to form alkali NH₄OH ☑B no reaction between H₂ and acid ☑C no reaction between CH₄ and acid ☑D SO₂ will dissolve in water to make acid ∴ pH decreases as acid increases 			
6	В	75	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{0.035 - 0.025}{20 - 10}$ = $\frac{0.01}{10}$ = 1.0×10^{-3} mol l ⁻¹ s ⁻¹			
7	D	70	 A takes no account of particle's energy compared to Activation Energy B enthalpy change is unaltered by increase in temperature C activation energy is unaltered by increase in temperature D while there are more collisions (Answer A), more importantly there are more particles with energy greater than activation energy 			
8	В	79	 ☑A increasing concentration of acid would not lower curve from P to Q ☑B less copper carbonate means less gas produced ☑C would give steeper curve initially and then end at same volume ☑D would give steeper curve initially and then end at same volume 			
9	D	58	no of mol AgNO ₃ = volume × concentration = 1litre × 1mol l ⁻¹ = 1mol AgNO ₃ = 1mol Ag ⁺ ions 2Ag ⁺ (aq) + Cu(s) → 2Ag(s) + Cu ²⁺ (aq) 2mol 1mol 2mol 1mol 1mol 0.5mol 1mol 0.5mol ⊠A Copper nitrate solution produced would have the blue colour of Cu ²⁺ ions. ⊠B 0.5mol of Cu(s) reacts and 0.5mol of Cu(s) remains ⊠C 1mol of Ag(s) is formed. 1mol Ag has mass 107.9g ⊠D 1mol Ag ⁺ (aq) is displaced by excess Cu metal to form 1mol Ag(s) metal			
10	C	67	Activation Energy for forward reaction is measured from the reactants (X) to the top of the hill (Y) \therefore Ea = Y-X			
11	A	58	$\Delta H_{sol} = +13.6 \text{ kJ mol}^{-1}$ \therefore process is endothermic \therefore temperature decreases Only answer C shows temperature decrease (no need to do $\Delta H=cm\Delta T$)			
12	В	66	Large jump from 3 rd ionisation energy to 4 th ionisation energy so removal of 4 th electron must break a complete electron shell. Element must have 3 electrons in outer shell ∴ Group 3 element			

			$\square A 2^{nd}$ Ionisation Energy: $E^*(g) \rightarrow E^{2*}(g) + e^{-1}$					
12	Λ	72	■B 2 nd ionisation energy removes 1 electron from 1+ ion					
15	A	13	⊠C must be in gaseous state & 2 nd ionisation energy removes 1 electron from 1+ ion					
			⊠D must be in gaseous state					
			CO_2 is non-polar due to shape despite electronegativity difference. CO_2 contains					
		10	discrete non-polar covalent molecules with only London dispersion forces between					
14	A	68	molecules (hence CO2 is a gas at room temperature).					
			SiO ₂ is non-polar covalent network with strong covalent bonds holding network					
			structure together (hence SiO_2 is a solid due to covalent network structure)					
			gfm He = 4g \therefore no. of mol = $\frac{muss}{gfm} = \frac{10}{4}$ = 4mol He atoms					
15	^	52	EA gfm CH4 = 16g \therefore no. of mol = $\frac{1003}{gfm} = \frac{10}{16}$ = 1mol CH4 molecules = 5mol atoms					
19	C	52	B grm $O_2 = 32g$ \therefore no. of mol = $\frac{mass}{grm} = \frac{37}{32} = 0.5$ mol O_2 molecules = 1 mol atoms					
			\mathbb{E} g m Nri3 - 1/g no. of mol - $\mathbb{E}^{20}/_{gfm}$ - /17 - 1 mol Nri3 molecules - 4 mol atoms					
			$\frac{1}{1} m c = -6.02 \times 10^{23} c atoms = 12c$					
		FO	1×10^{22}					
16	В	58	$1 \times 10^{22} C$ atoms = $12g \times \frac{100}{6.02 \times 10^{23}}$					
			= 0.2g					
			$C_2H_{6(q)} + 3\frac{1}{2}O_{2(q)} \rightarrow 2CO_{2(q)} + 3H_2O_{(1)}$					
			1mol 3.5mol 2mol 3mol					
17	D	51	1vol 3.5vol 2vol - (NB Liquids have negligible volume)					
1/	D	JI	20cm ³ 70cm ³ 40cm ³ -					
			$(+30 \text{ cm}^3 O_2 \text{ leftover})$					
			Final Volume = $\frac{10 \text{ cm}^3}{40 \text{ cm}^3 \text{ CO}_2 + 30 \text{ cm}^3}$ leftover O_2)					
			MA reforming increases formation of branches, cyclo- rings and aromatics					
18	Α	71	B molecules are rearranged but carbon number is unchanged					
			Sc reforming increases branching not decreases branching					
			inter of c-c double bonds unchanged					
	~	68	$CH_3CH_2CH_2CO \oplus CH_2CH_3$					
19	В		4 carbons on carboxylic acid side 2 carbons on alcohol side					
			ester ends in butanoate ester starts with ethyl					
			⊠A chloroethene C₂H₃Cl has no isomers as Cl is always on C₁ of molecule					
20		10	\blacksquare B chloroethane C ₂ H ₅ Cl has no isomers as Cl is always on C ₁ of molecule					
20	D	69	■C 1,1,2-trichloroethene has no isomers as numbering system will always be 1,1,2					
			☑D C2H4Cl2 has two isomers: 1,1-dichloroethane and 1,2-dichloroethane					
			🗷 A Secondary Alcohol (2 carbons directly attached to the carbon with -OH group)					
21		22	⊠B Secondary Alcohol (2 carbons directly attached to the carbon with -OH group)					
61	U	00	■C Tertiary Alcohol (3 carbons directly attached to the carbon with -OH group)					
			☑D Primary Alcohol (1 carbon directly attached to the carbon with -OH group)					
			н СНзн н					
			H - C - C - C - H					
22	R	64						
66	U		(Ĥ (ÔH)Ĥ) Ĥ					
			2 mothulbut 1 and 2 mothulbut 2 and					
			\blacksquare A Benzene C ₆ H ₆ is not an isomer of cyclohexane C ₆ H ₁₂					
23	C	C 66	B Benzene does not quickly decolourise bromine solution as it has no C=C					
			\square Benzene C ₆ H ₆ and ethyne C ₂ H ₂ have the same C:H ratio					
			nexerie has c=c so undergoes addition, benzene has no c=c					

24	D	73	Esters are used for Flavourings + Perfumes due to their sweet smell and are also used as solvents for non-water soluble substances.					
25	A	48	$- \begin{array}{c} O \\ H \\ - C \\ polyamide \end{array} \begin{array}{c} \begin{array}{c} hydrolysis \\ water added \\ at break \end{array} \begin{array}{c} O \\ - C \\ carboxylic acid \end{array} \begin{array}{c} H \\ + H \\ - N \\ amine \end{array}$					
26	D	71	A Addition/Hydration Reaction: $C_2H_4 + H_2O_{(g)} \rightarrow C_2H_5OH$ IB Combustion Reaction: $C + O_2 \rightarrow CO_2$ IC Combustion Reaction: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ ID Production of Synthesis Gas: $CH_4 + H_2O_{(g)} \rightarrow CO + 3H_2$ (also called steam reforming)					
27	В	74	 ☑A Poly(ethyne): polymer which conducts electricity ☑B Poly(ethenol): polymer which is soluble in water ☑C Biopol: polymer which is biodegradable (broken down by bacteria) ☑D Kevlar: Strong polymer used in bullet-proof vests 					
28	A	50	Cracking produces compounds that are unsaturated (contains C=C double bonds) and are usually smaller: $C_3H_8 \rightarrow C_3H_6 + H_2$					
29	С	76	$C = C \qquad \frac{\text{Hydrogenation}}{\text{Addition of H}_2} \qquad - C = C - C - C$					
30	С	72	 ☑A lacks -NH₂ amine group ☑B lacks -COOH carboxyl group ☑C contains all groups shown in diagram opposite (R=-CH₃) ☑D lacks -NH₂ amine group 					
31	В	72	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
32	С	76	 A equilibrium does not stop either forward or reverse reactions B equilibrium rarely has 50% reactants and 50% products C rate of forward reaction = rate of reverse reaction D activation Energy for forward and reverse reactions are different 					
33	D	65	I _{2(g)} + H _{2(g)} ⇒ 2HI _(g) 1mol 1mol 2mol 1vol 1vol 2vol (at same conditions of temp and pressure) 2vol → 2vol ∴ 2 volumes of reactants turn into 2 volumes of product ∴ no change to volume of gas as reaction proceeds ∴ pressure inside container is unchanged					
34	D	65	 Is change to volume of gas as reaction proceeds pressure inside container is unchanged A sodium hydroxide is strong alkali so has a higher pH than weak ammonia B no. of moles of solute is the same but mass of 1 mole is different C Sodium hydroxide will conduct better as it contains more ions D The same no. of moles of acid will be neutralised by both 					
35	С	50	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					

36	В	47	⊠A made from st ⊠B made from we ⊠C made from st ⊠D made from st	rong acid (nitri eak acid (ethanc rong acid (hydr rong acid (sulpl	c acid) d bic acid) d ochloric acid) d nuric acid) d	& strong alkali (NaOf & strong alkali (KOH) & weak alkali (ammon & strong alkali (LiOH	H) ∴ neutral pH) ∴ alkaline pH ia)∴ acidic pH) ∴ neutral pH			
37	A	42	⊠A Oxidation: Sr ⊠B Sn ⁴⁺ is found ⊠C Reduction: H <u>c</u> ⊠D Cl ⁻ is a specto	A Oxidation: $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$ B Sn^{4+} is found in $SnCl_4$ and is a product not a reactant C Reduction: $Hg^{2+} + 2e^{-} \rightarrow Hg$ D Cl^{-} is a spectator ion						
38	С	36	Unlabelled line is Cu ²⁺ + 2e ⁻ → Cu re of copper so line number of electro	Unlabelled line is for reaction: $Cu^* + e^- \rightarrow Cu$ $Cu^{2*} + 2e^- \rightarrow Cu$ reaction requires twice number of electrons to produce same mass of copper so line C is correct as half the mass of copper is produced for the same number of electrons						
39	С	66		Time (years) 0 5600 11200	% Remaining 100% 50% 25%	No. of Half Lives 0 1 2				
40	В	70	β-emission: atc	omic number in ²³¹ Th		& mass number rer + ⁰ ₋₁ e	nains constant.			

	2006 Higher Chemistry Marking Scheme						
Long Qu	Answer	Reasoning					
1	Acovalent molecularDcovalent networkCionicBmetallic	A Covalent Molecular - Does not conduct and has low mpt and bpt D Covalent Network - High mpt and bpt and does not conduct C Ionic - high mpt and conductor when molten but not solid B Metallic - conducts when solid and molten					
2a	number of protons increases	Increased positive charge across period pulls in outer electrons more. Across a period the same electron shell is being filled and atoms do not get bigger)					
2b	fullerene	Fullerene has C_{60} carbon structures which are discrete covalent molecules.					
2c	no difference in electronegativity	Nitrogen and Chlorine both have an electronegativity value =3.0 and the electrons are shared equally in the covalent bond making it pure/non-polar covalent bonding					
3a	carbon dioxide and nitrogen	$2CO + 2NO \rightarrow 2CO_2 + N_2$					
3b	Answer to include:	molecules adsorbmore successfulproductmoleculeson surfacecollisionsformeddesorb/leave					
4a	-297.2	$\Delta H = cm\Delta T = 4.18 \times 0.1 \times 10 = 4.18 kJ$ gfm CH ₃ OH = 32g 0.45g CH ₃ OH \leftrightarrow 4.18kJ \times ³² / _{0.45} = -297.2 kJ mol ⁻¹					
4b	Incomplete combustion heat lost to surroundings evaporation of methanol	Any 2 from 3 answers, 1 mark each (PPA Question)					
4b	Any two from:	incomplete combustion heat lost to surroundings evaporation of methanol					
5a (i)	Н Н Н Н-с-с-с-н ОН ОН ОН	Glycerol is also known as propane-1,2,3-triol. propane-1,2,3-triol. 3 carbon mainchain with C-C single bonds Functional groups in carbons C1, C2 and C3 -OH groups					
5a (ii)	fats or oils	ts or oils $H = C - O - C - C_{17}H_{35} + C - C - C - H$ $H = C - O - C - C_{17}H_{35} + C - C - C - H$ $H = C - O - C - C_{17}H_{35} + C - C - C - H$ $H = C - O - C - C_{17}H_{35} + C - C - C - H$ $H = C - O - C - C_{17}H_{35} + C - C - C - C_{17}H_{35}$ $H = C - O - C - C_{17}H_{35} + C - C - C_{17}H_{35}$ $H = C - O - C - C_{17}H_{35} + C - C - C_{17}H_{35}$					
5b	Equation showing:	$4C_{3}H_{5}N_{3}O_{9} \rightarrow 6N_{2} + 10H_{2}O + 12CO_{2} + O_{2}$					
6a	Answer to include:	count number of bubbles per unit time valid method of altering temperature					
6b	enzyme denatures or changes shape	Active site of enzyme changes shape so substrate no longer fits the active site.					
7a	ethene has to be produced from another chemical	thene is made as a product of cracking naphtha from crude oil or ethane from natural gas.					

7 b(i)	recycling of ethene	Recycling of unused reactants or by-products in a chemical process will improve						
7 D(1)	from separator A	the net heils at 78% and will avance to from the solution and condenses to form						
7b(ii)	distillation	Thanol Dolls at 18°C and Will evaporate from the solution and condenses to form concentrated ethanol						
7c(i)	hydration or addition	water is added across C=C double bond is an example of hydration/addition reactions						
7c(ii)	shifts to the left	mperature increase favours endothermic reaction ndothermic reaction is the reverse reaction. roducts break down quicker than products form and equilibrium shifts to left.						
7c(iii)	10%	$C_{2}H_{4} + H_{2}O \longrightarrow C_{2}H_{5}OH$ $1 \text{mol} \qquad 1 \text{mol}$ $28g \qquad 46g$ $28kg \qquad 46kg$ $10kg \qquad 46kg \times \frac{10}{28}$ $= 16.4kg \text{ (Theoretical)}$ $\% \text{ Yield} = \frac{Actual}{\text{Theoretical}} \times 100 = \frac{1.64}{16.4} \times 100 = 10\%$						
8a	to ensure same volume of gas is used	The breath test involves the inflation of the bag so that the same volume of breath is used in every test to make the comparison a fair one.						
8b	H ⁺ ions are reactants in the reaction	$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$						
8c	ethanal or ethanoic acid	Oxidation: Primary Alcohol "Aldehyde "Carboxylic Acid ethanol ethanal ethanoic acid Oxidation of Secondary alcohol + ketone + [No oxidation] Tertiary alcohol + [No oxidation]						
9a (i)	$H - C - C = H$ $H_2C = C + C$							
9a (ii)	addition	C=C double bonds split to C-C single bonds and molecules join up to make long polymer chain						
9b	hard-wearing stronger more rigid	Cross-linking between chains adds strength to the chains as they support each other						
10a	NO₃ ⁻ + 4H ⁺ + 3e ⁻ ↓ NO + 2H₂O	$ \begin{array}{cccc} Write \ down \ main \ species \ involved & NO_3^- & \rightarrow & NO \\ Balance \ all \ atoms \ other \ than \ O \ and \ H & NO_3^- & \rightarrow & NO \\ Add \ H_2O \ to \ other \ side \ to \ balance \ O \ atoms & NO_3^- & \rightarrow & NO + 2 \\ Add \ H^* \ to \ other \ side \ to \ balance \ H \ atoms & NO_3^- + 4H^+ & \rightarrow & NO + 2 \\ Add \ e^- \ to \ most \ positive \ side \ to \ balance \ charge & NO_3^- + 4H^+ + 3e^- & \rightarrow & NO + 2 \\ \end{array} $						
		Add e to most positive side to balance charge $NO_3 + 4H + 3e \rightarrow NO + 2H_2O$						
10ь	3.8	$\frac{\text{Add e to most positive side to balance charge NO_3 + 4H + 3e}{\text{gfm } -3 + 4H + 3e} \rightarrow \text{NO} + 2H_2O$ $gfm Cu = 63.5g \text{ no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{10g}{63.5g \text{ mol}^{-1}} = 0.157 \text{mol}$ $Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 + 2H_2O$ 1mol 0.157mol 0.157mol $Volume = \text{no. of mol } \times \text{Molar } Volume = 0.157 \text{mol} \times 24 \text{litres mol}^{-1} = 3.8 \text{litres}$						

11b	ethanoic acid higher sulphuric acid lower	ethanoic acid is a weak acid so [H ⁺] is lower ∴ pH is higher Sulphuric and hydrochloric acids are strong acids but H ₂ SO ₄ releases 2H ⁺ when dissolved in water while HCl releases one H ⁺ ion when dissolved in water. Sulphuric acid is more acidic than hydrochloric acid and has a lower pH.					
11c	hydrogen bonding	Hydrogen bonding takes place between molecules containing one the following bonds: O-H , N-H or H-F					
12a(i)	2. temp of KOH 3. Temp of HCl 4. Vol of HCl/KCl 5. Final/max temp of KCl	PPA Technique Question					
12a(ii)	-391	● KClO ₃ + 3Mg → KCl + 3MgO ΔH=-1852 kJ ● K + $\frac{1}{2}Cl_2$ → KCl ΔH=-437 kJ ● Mg + $\frac{1}{2}O_2$ → MgO ΔH=-602 kJ ●×-1 KCl + 3MgO → KClO ₃ + 3Mg ΔH=+1852 kJ ● K + $\frac{1}{2}Cl_2$ → KCl ΔH=-437 kJ ● K + $\frac{1}{2}Cl_2$ → KCl ΔH=-437 kJ ● K + $\frac{1}{2}Cl_2$ → KCl ΔH=-437 kJ ●×3 3Mg + $1\frac{1}{2}O_2$ → 3MgO ΔH=-1806 kJ ●'+@+€' K + $\frac{1}{2}Cl_2$ + $1\frac{1}{2}O_2$ → KClO ₃ ΔH=- 391 kJ					
12b	2Na(s) + ½O ₂ (g) ↓ Na ₂ O(s)	Definition of Enthalpy of Formation: The formation of one mole of a substance from its elements in their natural state. $2Na(s) + \frac{1}{2}O_{2(g)} \rightarrow Na_{2}O(s)$					
13a	Diagram containing:	1 mark vessel containing reactants being heated					
13b	ethane	CH_3COONa splits up with -CH_3 joins up with -H from NaOH to form CH_4 CH_3CH_2COONa splits up with -C_2H_5 joins up with -H from NaOH to form C_2H_6					
14a(i)	Equation showing:	$^{241}_{95}$ Am $\rightarrow ^{237}_{93}$ Np + $^{4}_{2}$ He					
14a(ii)	alpha particle not very penetrating	Alpha particles are stopped by paper and are not very penetrating. Beta particles are stopped by aluminium and are more penetrating. Gamma rays are (not completely) stopped by lead and are very penetrating.					
14b	0.00022g	$gfm \ AmO_2 = 273$ mass of Americium-241 = 0.00025g × 241/273 = 0.00022g % mass = $\frac{mass \text{ of Americium-241}}{gfm \ AmO_2}$ × 100 = $\frac{241}{273}$ × 100 = 88.3% mass of ^{241}Am in 0.00025g \ AmO_2 = 88.3% of 0.00025g = $^{88.3}/_{100}$ × 0.00025g = 0.00022g					
15a	$2CI^{-}_{(aq)} + 2H_2O(l) \\\downarrow \\ CI_{2(g)} + H_{2(g)} + 2OH^{-}_{(aq)}$	$2Cl^{-}(aq) + 2H_2O(l) \rightarrow Cl_2(g) + H_2(g) + 2OH^{-}(aq)$					
15b(i)	sodium hydroxide	Na ⁺ ions travel across the membrane to the RHS OH ⁻ ions created by the chemical reaction: $2Cl^{-} + 2H_2O \rightarrow Cl_2 + H_2 + 2OH^{-}$					

15b(ii)	used as a fuel or renewable/not finite or no CO2 produced	Hydrogen gas is a fuel which released large amounts of energy when it joins up with oxygen in either a combustion reaction or to produce electricity in a fuel cell. No CO2 is produced so there is no contribution to the Greenhouse Effect					
15c	1059000g or 1059kg	Q=It = 80000 × (10×60×60) = 288000000C $2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-}$ 1mol 2mol $71g \leftrightarrow 2\times96500C$ $^{2880000000C}/_{2\times96500C} \times 71g \leftrightarrow 288000000C$ = 1059000a					
16a	С-О	Wavenumber for absorption at T = 1075cm ^{-1.} Match wavenumber value against table in guestion.					
16b(i)	S or C≡C-H Q or C≡C	The addition of hydrogen across the $C \equiv C$ triple bond turns the triple bond into a C=C double bond. This would remove the peaks at S for C=C-H adsorption and at Q for the C=C absorption.					
16b(ii)	propan-1-ol	$ \frac{3-\text{hydroxypropyne}}{H} H - C \equiv C - C - O - H \\ H H - C \equiv H $	+H₂ →	$\begin{array}{c} 3\text{-hydroxypropene} \\ H & H & H \\ H & -C & -C & -C & -H \\ H & H & H \end{array}$	H₂ →	$\begin{array}{c c} propan-1-ol \\ H & H & H \\ & & \\ H-C-C-C-C-O-H \\ & & \\ H & H & H \end{array}$	